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Passive advection in nonlinear medium
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Forced advection of passive tracer in nonlinear medium by a smooth flow is considered. Effective
theory for small scale scalar fluctuations is shown to be liiaaymptotic freg and universal.
Structure functions demonstrate an extremely anomalous, intermittent behavior while the dissipative
anomaly is absent in the problem. €999 American Institute of Physics.
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I. INTRODUCTION d 9
d—:—+UVr, (3)
Turbulence is a very nonequilibrium state of nature, t at

which becomes stationary if energy is supplied permanentlyhere the incompressible velocity fieldt;r) is prescribed
at large scales. To construct a theory of turbulence means {g pe known statistically.

describe temporal and spatial distributions of velocity and  \ye aim at finding the statistics of the passive scalar
variety of different thermodynamic characteristics of thefixeq py (1)—(3) in the inertial interval of scales, i.e., for

fluid, i.e., density if turbulence is compressible, temperaturgales that are less than both the velocity correlation $gale
if thermo-advection is applied, relative concentration ofz,4 the scale of the scalar supply and larger than the
components in the case of multicomponenblon) flow,  gjffusion scale. Incompressible velocity field at those scales
magnetic field distribution in a conducting fluid, etc. Dynam- s modeled by the first term of its local expansion in the

ics of different fields describing a real turbulent flow is both separation relating the reference point to the current one,
nonlocal and nonlinear. We call the general situatative

to emphasize the reciprocal character of interaction between u(t;r)=a(t)r. (4)
velocity field and thermodynamic characterigjc However, .
sometimes the effect of a thermodynamic field on the velocHere o(t) is adxd traceless random matrix of the veloci-
ity distribution is suppressed. It takes place, for example, iy’s derivatives.
scales are separated: a typical spatio-temporal scale of veloc- Problems(1)—(4) describe forced advection of a scalar
ity is much larger than one of a thermodynamic quantity. ThePollutant in the viscous—convective range absorbed or gen-
case when it is theoretically justified to neglect the effect oferated, depending on the sign of the nonlinear #te(6),
back reaction of thermodynamic field on velocity, in com-for example via a chemical reaction with other species pre-
parison with those of advection and nonlinearity, is calledsented abundant in the flow. The problem is of a fundamental
passive The passiveness does not necessarily mean linearitymnportance for geophysical atmospheric turbulefsze Ref.
Moreover, our objective is to study the passive yet nonlinead for review. Other relevant phenomenon is turbulent
situation. thermo-advection in a cell attached to thermal bade Ref.
We consider a thermodynamic quantﬂwoverned by 2 and reference theréinThen,&?,U(&) is the nonlinear heat
transfer coefficient and(t;r) measures local deviation from
d SH{6! the bath temperature. Many regimes of premixed turbulent
aa= ~ 50 +p(t;r), (1)  combustion are also governed t)—(4).2 The last(but not
the least problem to be mentioned is the phase ordering in a
system described by a nonconserved scalar order parameter
’ 2 (a very well known object of the phase transition theory, see
Refs. 4—7 for reviewsadvected by large scale turbulent flow
(some interesting problem combining advection and critical
where H{ 6} is a positive thermodynamic functional of the dynamics was studied in Ref).8
system,U(6) is a confined y — +c at 6— =) potential, Our consideration will be based essentially on under-
« is the diffusion coefficient, ang(t;r) stands for statisti- standing, results and general terminology emerged from
cally steady forcing to provide constant supply(ofherwise  studies of the pure problem of passive scalar advection
relaxational 6 dynamics at large scales. We will discuss medium effect at allU=0) having almost 5 decades of
here the simplest case possible, when the thermodynamhistory (see Obukhov and Corrsin papet$for the earliest
field is a scalarnotice, however, that generalization of the contribution3. Batchelot! has pioneered the study of the
theory discussed for a vector or generally tensorial object ismooth velocity field limit(4), which nowadays has grown
possiblg. @ is imbedded in a turbulent flow, i.e., the tempo- to be (through the important contributions of many
ral derivative is extended by the sweeping term peoplé?~23 one of the most advanced theories in the field.
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A temporal short-correlated but spatially nonsmooth modelmportant conclusion on the followingo anomalycriterion
of velocity, one which was given more than 2 decades latetwhich, we believe, is genenalif zero dissipation analysis
(the first ever analytical evidence of intermittency in turbu-produces a normalizable and everywhere positive solution
lence was invented by Kraichnalf:?* Structure functions of for the probability density functionalPDP) of fluctuated
scalar difference in the convective range field (6 in our casgthen the dissipative anomaly is absent.
Physics of the no anomaly phenomenon is simple, scalar

Sq(r)=(|6(t;r)— 0(t;0)|%)~r, ) pumped at the integral scale and transferred downscales by
became the key object in the intermittency study. Theadvection is relaxationally destroyed at all the scales. Practi-
anomalous scalingd,,=né,—&,,, describing the law of cally no scalar reaches the dissipative scale and therefore the
the algebraic growth with./r of the dimensionless ratio, effect of diffusion is really negligible. The emerging steady
Son(r)/[S,(r)]", was shown to take place genericaify?’  state is a result of an interplay between pumping, advection
The anomalous exponents were calculated perturbatively iand nonlinearity but the diffusion, if small, is simply not
expansions about three nonanomalods,&0) limits, of  involved.
large space dimensionality,?*?8 extremely nonsmooth?° The problem is formulated in Sec. Il. To describe the
and almost smooffi velocities, respectively. A strong convective range scalar fluctuations we show how to inte-
anomalous scalingsaturation ofé,, to a constantwas grate out the large scale contribution in Sec. lll. The scale
found for the Kraichnan model at the largesby a steepest Separation results in suppression of nonlinearity. The effec-
descent formalismi®3! Although the restricted asymptotic tive small scale theory appears to be a linear one with uni-
information about anomalous exponents in the model igorm damping. All the final answers emerging from the study
available, a future possibility to establish the rigorously com-of the linear problem are presented in Sec. IV. Section V is
plete dependence @k, onn, d and the degree of velocity reserved for conclusions.
nonsmoothness seems very unlikély a sense, recent La-
grangian numeri¢é compensates for the lack of rigorous
information. Il. FORMULATION OF THE PROBLEM

Problems (1)—(4) also show anomalous scaling;,,
<né,. Here, the intermittency is resolved analytically foran ~ (1)—(3) describe advection of a passive scaiér;r) by
arbitrary asymptoticallyat 6— =) convex potentiaU( 6): the smooth incompressible velocity fie(d). The scalar is
56, obeys the same statistics as one would expect from afPrced by random fields(t;r), which for the sake of sim-
auxiliary (linear!) problem with quadratic potential)* (6) plicity is considered to be Gaussian, and therefore fixed un-
=a6?, wherea is given by the average of2U(#) with ~ ambiguously by
respect to single point scalar distributior?;~exp . . — _ _
[—U(B) o], With xo=Zdt($(t:0)$(0:0)). @ is always <¢(t1ar1)¢(F2,r2)> x(|rs r2|)5(.t1. ta). )
positive, i.e., at the smallest scales the effect of nonlinearity/iere the functiony(r) decays sufncuzntly fast at large
generally alternating between damping and acceleration, ca/€sf >L andxo= x(0) is the flux of ¢~ pumped into the
reduced to a pure linear damping. Finally, for the short-Systema is a random in time matrix process described by its
correlated velocity statistics we have found anomalous expdDDF,tb{fr(t)}, which is supposed to be known. Diffusion is
nents small, i.e., the range of scales in betwegr \x/[ S/ 7]** (S
and 7 are typical values of the strain and velocity correlation

¢ =min{ q [l 2+ 2aq 5] (6 ime, respectivelyandL (usually called the convective in-
q ' A A A’ terval) is sufficiently large L/r 4> 1.
_ ) ) ) Our main purpose is to find the two-point scalar PDF,
where\ andA are, respectively, the average and dispersion
of the exponential rate of line stretching\(t) Pa(xs x_[r)=(d[x_— 6(t;0) + 6(t;r)]5
=t~ 1In[R(t)/R(0)], with R(t), satisfied toR(t) = o(t)R(t). X[x,— 6(t;0)— 6(t;r)]), (8)

Generalization of6) for the case of arbitrary correlated in
time velocity is given by(34).

The anomalous behavig6) differs from that perceived Son(r)={[ 6(t;r)— 6(t;0)1?"), 9)
in the Kraichnan model. First of alk,, as a function o ) ) - L
does not saturate to a constant at the largesiut keeps Where averaging with respect to bod(t) and ¢(tr) is

growing with n as yn (that is in thes-correlated case, in @ssumed. _ _
general one gets! Y#, g>1). The secondand majoy Other important objects used in the course of the forth-

difference is associated with the concept of dissipativé?®mMing calculations will be the two-point scalar PDF condi-
anomaly. It is generally accepted to talk about dissipativeioned byo(t)

anomaly if some stationary object calculated at zero dissip
tion (k=0) does not coincide with it&—0 counterpart. In
the Kraichnan model the anomalous scaling coexists with the  =(8[x;— 8(t;r1)]18[X,— 6(t;15) 1) 4, (10)
dissipative anomal§ However, the nonlinear problenis)—

(4), as well as their linear descendant, show no dissipativ
anomaly while the anomalous scaling is present. We base the P;(x)={8[x— 6(t;r)]). 1y

and the scalar structure functions

& VPN ’
Go(X1,Xo|r1 25t {o(t); —e<t'<t})

gnd the single point scalar PDF
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0
(2 'p\(6). (19

Deep inside the convective rangat L>r,), |6,— 6, d2U(0) = d2U
a= Ef do
s 0% de

<|6,+ 60,|, and(10) can be decomposed into the product 97

01,051t {o(t'); —o<t'<t . . . .
Go( 01, 02l 12:t{or (1) N The normalized and everywhere positive solutior(1#) is

:7)1( 01)*g—(61_ 02|r1—r2,t,{a—(t’),—oogt’ﬁt}), exq_u(e)/xo]

P1(0)= . (20
(12 ) e o exd — U (0l xal
where spatial homogeneity of the Batchelor case was takegubstitution 0f(20) into (19) gives
into account. The average ¢f2) over o reads as < 2>
[dU(6)/da]%) s
Po(01,05|r 1) =P1(01)* P_(6,— 6,1 15). (13 a:X—o
The assumption onthe absence of the dissipative " )
anomalyin the case of a very small diffusion lies in the core _ JZ.d6o[dU(0)/d6] exd —U(6)/xo] 21)
of our consideration. The formal consequence of the state- ol .doexd —U(6)/xo] '

ment is the possibility to omit the dissipativedependent

term from (2) already on the dynamicdlyet unaveraged ! "
level. The no-anomaly assumption will be justified by the @Symptotically — =) convex. Therefore, we have found

positivity and normalizability of the derived answers for that deep inside the convective interval regions of scalar gen-
PDFs eration are suppressed statistically.

On the basis 0f16) and(18) we conclude that from the
point of view of the small scale statistics of scalar difference
our problem is equivalent to the linear one, withl(6)/d 6
lll. REDUCTION OF THE NONLINEAR PROBLEM TO A being replaced just by 6. In other terms, we may proceed

LINEAR ONE averaging the linear dynamical equation

i.e., a is always positive constant if the potentidl(x) is

In the absence of diffusiofl)—(4) can be integrated 00+ ot (1)Ir*V 0= —a b+ ¢(t;r), (22

along the Lagrangian trajectoriésharacteristic . - . o
9 grang J ésh s instead of the original nonlinear one. The steady distribution

d of the scalar difference enforced (82) was the subject of a
;H[t';p(t')]=—d—0 +¢[t';p(t)], (14  recent papef; the method and results of which will be
t o[t p(t)] briefed and generalized in Sec. IV.

d -
—p(t)=a(tp(t"), pt)=r, —owo<t'<t. (15 IV. VELOCITY AVERAGING: ANOMALOUS SCALING
dt’

The linear analog ofl14) is

The nonlinearity leads to dumping of the scalar in regions of .
convex (@4U>0) potential while it generates the scalar fluc- o(t;r)= j dt’ exd —at’ o[t ;p(t—t')], (23)
tuations anywhere else. Fokker—Planck equatiGes Ref. 0

33 for similar calculations derived out of (14), (15 by wherep is the Lagrangian trajectory fixed Hg5).

means of direct averaging over the Gaussian ngisee Consider the case af correlated in time velocity

du(e) t t,))=D[(d+ 1) 5** 58" — 5*¥ 5P~
[ "dg —X(0)8§ P,=0, (16) <0'a,8( 1)0',“1( 2)> [( )

— 8P ]8(t1—tp), (24)
9+ E (O_/U/(t)r!u.av g dU(ai)) whered is space dimensionality. For the purpose of timeh2
P VT T de, structure function calculation it is enough to discuss the si-
multaneous produck...,,=(#6,- - - 65,), which according
= 2 X(ri=1))d4,04|G2=0, (1np 10(23.a9is
ij=1,2 !

{1,---,2n} n -
where G, is not stationary, since it does depend on timeFl...2n={, > }<kHl jo dyce” “Ux[W(tori i, 1)
11,...12n = :

explicitly througha(t). Integrating(17) with respect to6., %25)
=6,+ 6, and assuming that the integral is formed|&{

— 6,|<|6,+ 65|, where(12) is valid, we arrive at the close _ t . W(t) . .

equation for the scalar difference PDF W(t)=T eXF{ Jl)dt’o(t’) DT oW). (26)

v v 2
{0+ (" (O)r#9) — adex) — 2[ x(0) — x(r)]o5} Calculation ofF ;.. ,, is essentially simplified for the collin-

ear configuratiom; =nr; (we will argue below why the scal-
ing results derived in the collinear way hold genergllthen
Here a is defined as the following average over the largethe 2nx (d— 1)parametric averag@b) is reduced to the fol-
scale# statistics lowing single-parametric one:

XG_(X|r;t;{o(t); —e<t'<t})=0. (18
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{1,---,2n} n
Fi.on= 2 < J dt e “Ux[e”Wr; . -k+1]>
{ig,...izn}
27
with rij=|r;—
7(t)=In|W(t)n|, is the only fluctuating quantity left. The

=0 version of(27) was calculated in Ref. 17 for the&=2
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into (29) one arrives at the anomalous part (6, with q

=2n. The normal-scaling counterpart () originates from

expansion of the integrand ¢29) in a regular series in?.
The basic physics of nonzega,, (means deviating from

rj|. Here, the longitudinal stretching rate, the naive balance of pumping and advectiand generally

anomalous §,,<n¢,) scaling ate>0 can be stated quite
clearly. According to(23) the advection changes scales but

case and generalized for ady2 in Ref. 18 via a change of not amplitude, while the amplitude of the injected scalar field
variables and further straightforward transformation of thedecays exponentially from the time of injection at the con-

path integral standing for the average owét). It is shown
in Refs. 17 and 18 that the measure(of the exponential
stretching rate of a line elem@ris a shifted Gaussian one

o (p—N)2
Dn(t)ex;{ - Jo dt(ﬂ2A )

: (28)

characterized by mean Lyapunov exponeﬁt= Dd(d
—1)/2, and dispersiold=D(d—1). (28) applied to(27)
produces

Fi...on . N2
nl :j(ﬂldtidﬂi exp y ot

2n}

X E H[e“ix(e’?ir

kont 1=1
XG(ti—l,i 1)1 (29

where 7; (i=<n) integrations are not restricted=<Q,<- - -
st <o, t 1= 0, t; ,=t; — t (with equivalent nota-
tions for 7) and

ki 'k2i+1)

Mn+1=

exf — (7%/2A1)]
2m7At .

G(t;7) (30

The integrand of(29) decays exponentially in time and is

dominated by the contribution into the integral formed;at
~1/a. The leading term does not depend on aryand

stant ratew. The temporal integrals i(29) form at the mean
time to reach a scale which is proportional to the negative
log of the scale. However, the effective spread in the factor
by which amplitude has decayed, upon reaching a given
scale, increases as the scale decreases. This isfyyby0.
Also there is more room for fluctuations about the mean time
due to the interference between the exponential decay of the
scalar amplitude and fluctuations of the stretching rate
Thus intermittency increases when the scale size decreases.
Another way to derive(6) from (23) is to construct
Son(r) directly. It is easy to check that the structure functions
of different orders are produced by the PDF satisfied to

xrl—Z)\_/Aarrl-#Z)\_/AarP_ + ady(XP_)
+xo=x(NIF22P_ =0, (31

The solution of(31), in the regime where you can neglect the
x-dependent term is

1 (ot+ix (9L)S+1
ds| —

P_ (x|r)— s <

0t —iw
Vd2/4+ as/[D(d—1)]—d/2
E) ag.
Here,a; is a function fixed by matching at the integral scale,
roughly, P_(x|L)~P:(x), whereP;(x) is given by (20).

The PDF(32) appears to be positive and normalizable, there-
fore confirming the initial hypothesis on the absence of dis-

X (32

gives no contribution into @th order structure function. The sipative anomaly. Also(32) shows that6) holds for general
first actualr-dependent contribution stems from-1 tem-  (not only even integerpositiveq.
poral integrals formed atr~1/a, and one att;~ The assumption of collinearity made above is not cru-
~In[L/r})/maxa,D}. This special integration brings a spatlal cially important for evaluation 0f25). The calculations be-
dependence into the object, therefore on a single distanceome more evolvedbut still doable mainly because of the
Generally, there exists a variety of terms with all the possiblehecessity to follow additionally the dynamics of tie-1
Combinations, like term with integration formed at, with Sub'eading Lyapunov exponer(tsot just the |eading One
n—k ones atr,, and therefore dependent explicitly onm2(' which all are entering the argument of thdunction in (25).
—k) spatial points. However, we are looking exclusively for |n the 5-correlated case the Lyapunov exponents’ statistics is
a term dependent on all thendoints since only such a term Gaussian and the Lyapunov spectrum is equidistft.
Contl’ibute§2n(r) ltis Simple to calculate the Scaling of this Therefore, Compncations comes through the Sem(([f_ 1)
term making use of the temporal separatiQ- 7. Indeed, integrals to be inserted in the generalizatior(28). Having
the large time contribution may be extracted out2) ina  the large parameter[l/r] in hand we can treat all the inte-
saddle-point calculation. Variation of all the exponential grations in a saddle-point manner and the final answer for the
terms in(29) with respect td; gives a chain of saddle equa- correlation function will be consistent with what was derived
tions. They functions in the integrand df29) limits the 7 apove in the collinear case. In the simple calculations we
integrations from above by [lb/r]. Therefore, the desirable therefore check directly the absence of dissipative anomaly
2n-point contribution forms at ti  in this case. In Lagrangian terms it can be stated as follows:
= \/f/[A(ZanAﬂL)\z/Z)]In[L/r], andz;=In[L/r], where itis  two initially close Lagrangian trajectories, making a domi-
assumed that in the leading logarithmic order there is nmant contribution into the correlation functions of the
need to distinguish between contributions of different sepadumped scalar, stay close foreysee relevant discussion in
rationsr;; . Substituting the saddle-point valuestpfand »; Ref. 2. Notice that the dissipative anomaly is present in the
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pure Batchelor caséno medium,U=0),%! i.e., integration  brave(and, of course, is not rigorous at)alMore studies in
with respect to subleading Lyapunov exponents in the casthis direction, first of all on the nature of dissipative
results in the effective renormalization @8): the dispersion anomaly, are required.

of a line element exponential stretching rate=D(d—1)
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